A Meta-Analytic Framework for Assessing Surrogate

Outcomes

M. H. Gail

R. J. Carroll

H. C. van Houwelingen

11-25-98

- 1. Estimating the Effects of Treatment on the True

 Endpoint ,T, from Data on Surrogate Outcomes, S
- 2. Inference for Means $(T_{1i}, S_{1i}, T_{2i}, S_{2i})$
- 3. Inference for General Parameters

$$(\hat{\theta}_{1ti}, \hat{\theta}_{1si}, \hat{\theta}_{2ti}, \hat{\theta}_{2si})$$

4. Problems and Needed Research

Class of Experiments, C

Parameters
$$\mu_i = (\mu_{1ti}, \mu_{1si}, \mu_{2ti}, \mu_{2si})^T$$

Distribution of μ_i over $C: N(\mu, \phi)$

Given μ_i , the quantities (T_{1i}, S_{1i}) and (T_{2i}, S_{2i}) are

independent with respective covariances Σ_{11i} and $\,\Sigma_{22i}$.

These covariances can be estimated from individual-level

data
$$(T_{1ij}, S_{1ij})$$
 j=1,2,... n_i and (T_{2ij}, S_{2ij}) j=1,2,... m_i

New study, N, from class C

We want a prediction interval on $\mu_{1tN} - \mu_{2tN}$.

Given
$$S_{1N}$$
, S_{2N} , $\sigma_{22N} = Var(S_{1N})$, and

$$\sigma_{44N} = Var(S_{2N}), \ \mu_{1tN} - \mu_{2tN}$$
 is normal with mean

$$m(\theta) =$$

$$(\mu_{1t} - \mu_{2t}) + (S_{1N} - \mu_{1s}, S_{2N} - \mu_{2s}) \begin{pmatrix} \sigma_{22N} + \phi_{22} & \phi_{24} \\ \phi_{42} & \sigma_{44N} + \phi_{44} \end{pmatrix}^{-1} \begin{pmatrix} \phi_{12} - \phi_{23} \\ \phi_{14} - \phi_{34} \end{pmatrix}$$

and with variance $V(\theta) =$

$$(\phi_{11} - \phi_{31} - \phi_{13} + \phi_{33}) - (\phi_{12} - \phi_{32}, \phi_{14} - \phi_{34}) \begin{pmatrix} \sigma_{22N} + \phi_{22} & \phi_{24} \\ \phi_{42} & \sigma_{44N} + \phi_{44} \end{pmatrix}^{-1} \begin{pmatrix} \phi_{12} - \phi_{23} \\ \phi_{14} - \phi_{34} \end{pmatrix}.$$

Prediction interval on $\mu_{1tN} - \mu_{2tN}$ is $m(\theta) \pm 1.96V(\theta)^{1/2}$

- 1. The precision of this prediction interval is better than that based on the distribution of $\mu_{1tN}-\mu_{2tN}$ given (S_{1N}-S_{2N}). cf Daniels MJ and Hughes MD. Stat Med 16:1965-1982,
- 2. The structure above is similar to Buyse, Molenberghs, Burzynski, Renard and Geys (submitted) except that they assume $\Sigma_{11i} = \Sigma_{22i}$.

1997

3. Even if n_i and m_i tend to infinity, so that $\Sigma_{11i} = \Sigma_{22i} = 0$, the prediction interval has positive width. In contrast, if we had direct data on T_{1N} and T_{2N} , the width of the prediction interval would go to zero.

There is a need to estimate the parameters $\theta = (\mu, \phi)$.

Suppose we have M previous experiments from class C. The unconditional distribution of $(T_{1i}, S_{1j}, T_{2i}, S_{2j})^T$ is normal with

mean µ and covariance

$$\begin{pmatrix} \sigma_{11i} + \phi_{11} & \sigma_{12i} + \phi_{12} & \phi_{13} & \phi_{14} \\ \sigma_{21i} + \phi_{21} & \sigma_{22i} + \phi_{22} & \phi_{23} & \phi_{24} \\ \phi_{31} & \phi_{32} & \sigma_{33i} + \phi_{33} & \sigma_{34i} + \phi_{34} \\ \phi_{41} & \phi_{42} & \sigma_{43i} + \phi_{43} & \sigma_{44i} + \phi_{44} \end{pmatrix}.$$

Pseudo-maximum likelihood (empirical Bayes) maximizes over μ and ϕ with elements of $\hat{\Sigma}_{11i}$ and $\hat{\Sigma}_{22i}$ inserted.

To correct the prediction interval for using estimates of parameters, bootstrap to find the constant c_{α} such that

$$E_{\hat{\theta}} \left\{ \Phi(m(\hat{\theta}) + c_{\alpha}V(\hat{\theta})^{1/2}) - \Phi(m(\hat{\theta}) - c_{\alpha}V(\hat{\theta})^{1/2}) \right\} = 1 - \alpha$$

Carroll, RJ and Rupert, D. Technometrics, 33:197-210, 1991.

Laird, NM and Louis, TA. JASA 82:739757, 1987

Generalization: $\hat{\theta}_i = (\hat{\theta}_{1ti}, \hat{\theta}_{1si}, \hat{\theta}_{2ti}, \hat{\theta}_{2si})$ estimates

the parameters (of interest) of the marginal distributions

$$F(t|\theta_{1ti}), F(s|\theta_{1si}), F(t|\theta_{2ti}), F(s|\theta_{2si}).$$

Components of $\hat{\theta}_i$ are solutions to score equations.

Suppose $\theta_i = E(\hat{\theta}_i)$ is normally distributed, $N(\theta, \phi)$.

Given θ_i , $(\hat{\theta}_{1ti},\hat{\theta}_{1si})$ and $(\hat{\theta}_{2ti},\hat{\theta}_{2si})$ are independent

with respective covariances Σ_{11i} and Σ_{22i} . These covariances can be estimated from individual-level data using a sandwich estimate based on the empirical

covariances of the score equations.

Issues/Questions

- 1. How do you define the class C?
- 2. Can you get individual-level data on a sufficient number of antecedent studies to estimate distribution over C reliably?
- 3. Will there be sufficient precision in the prediction interval on $\mu_{1tN} \mu_{2tN}$, even with a very large experiment and precise estimates of S_{1N} and S_{2N} ? This depends on ϕ .
- 4. Is the analysis sensitive to the assumption that μ_i is normally distributed? If so, how can one test violations of this assumption? Can one reparameterize to parameters that are plausibly jointly normal? Can one

use Markov Chain Monte Carlo methods for nonnormal "priors" on μ_i ?

5. What about toxicity that is not encompassed in the main clinical endpoint, T?